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A B S T R A C T  

We use the Mordell conjecture for function fields in order to construct a 
non-PAC field whose maximal purely inseparable extension is PAC. 

A field K is p s e u d o  a l g e b r a i c a l l y  c losed  (abbrev. P A C )  if each absolutely 

irreducible variety defined over K has a K-rat ional  point. A theorem of Ax and 

Roquette [F J, Cot. 10.7] says that  if K is PAC, then so is each algebraic extension 

of K.  The converse is obviously false. However, Geyer and Jarden [G J, Prob. 

12.4] ask if the converse is at least true for purely inseparable extensions. 

In this note we answer also the latter question negatively, by constructing a 

non-PAC field which has a purely inseparable PAC extension. 

All fields in this note have a fixed positive characteristic p. 

LEMMA 1: Let F = K ( x l , . . . ,  x,~) be a finitely generated extension of a field K.  

Suppose that K is algebraically closed in F. Then 

oo 

(1) N K(xP~""  " ' x ~ )  = K. 
k----1 

Proo~ Denote the left hand side of (1) by F0. Suppose first that  K is perfect. 

Thus K p = K.  Hence F0 = F0 p is also perfect. In addition F0, as a subfield of F,  

is finitely generated over K [Lan, p. 64]. If F0 were transcendental over K,  we 
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could choose a transcendental basis t l , . . .  ,•r with r > 1. Then Fo would have 

a finite degree over E = K ( t l , . . . , t r ) .  On the other hand, since Fo is perfect, 

E(t11/p') would be contained in Fo and would have degree pm over E for each 

positive integer m. This contradiction proves that F0 is algebraic over K. As K 

is algebraically closed in F,  conclude that Fo = K. 

In the general case the maximal purely inseparable extension L of K is a perfect 

field. Hence, by the preceding paragraph, 

Fo C F A N L ( x ~  P" _ , . . . , x ,  ) = F a L = K .  
k=l  

So, Fo = K. | 

Suppose that  F is a transcendental extension of K. We say that a curve C 

which is defined over F is n o n c o n s t a n t ,  if it is not birationally equivalent over 

/~F to a curve which is defined over/~'. Here /~  is the algebraic closure of K. 

PROPOSITION 2: Let F be a finitely generated regular extension of a field Ko. 

Let C be a nonconstant curve of genus at least 2 which is defined over F. Then 

C(F)  is a finite set. 

Proof." This is the analog of the Mordell conjecture for function fields. See [Sam, 

pp. 80, 107, and 118]. | 

LEMMA 3: Let K be a finitely generated regular transcendental extension of a 

field Ko. Let C be a nonconstant curve over K of genus at least 2 and let F 

be a finitely generated regular extension of K.  Then K has a finitely generated 

extension E C F such that F / E  is a finite purely inseparable extension and 

c ( g )  = C(E).  
k pk 

Proof'. Let F = K . ( x l , . . . , x , ) ,  and for each k write Fk = K ( x  p , . . . , x ,  ). By 

Lemma 1, the intersection of all Fk is K. By Proposition 2, C(F) is a finite set. 

Hence, there exists a positive integer k such that  C(Fk) = C(K) .  So, E = Fk 

and F satisfy the assertion of the Lemma. | 

THEOREM 4: Let Ko be a countable field of characteristic p and let K be a 

finitely generated transcendental extension of Ko. Then K has countable regular 

extensions E C_ F such that F / E  is a purely inseparable extension, E is not PAC, 

but F is PAC. 

Proof'. Choose a nonconstant curve C of genus at least 2 which is defined over 

K (e.g., i fp  # 2 and t E K is transcendental over Ko, then y2  = X 5 T t  defines a 
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nonconstant curve over K of genus 2; if p = 2, then y2  + y  = X + ~ + ~ - 1  + 1 
X - t  

defines a nonconstant curve over K of genus 3). By induction we construct two 

ascending towers of fields K = E1 C_ E2 C_ E3 C_ . . .  and F1 C_ F2 C F3 C_ . . .  

and for each positive integer m we enumerate the absolutely irreducible varieties 

which are defined over Em in a sequence, Vml, Vm2, Vm3,... such that 

(.2a) Em and Fm are finitely generated regular extensions of K, 

(2b) Fro~Era is a finite purely inseparable extension, 

(2c) C(Em) = C(K) ,  and 

(2d) Vii(Fro) r 0 for i , j  = 1,. . .  ,m. 

Indeed, suppose that E l , . . . ,  Era- i ,  F1 , . . . ,  Fro-1 and Vq for i < m and all j 

have been defined such that they satisfy (2). Let V be the direct product of V~j for 

i , j  = 1 , . . . ,  m - 1. It is an absolutely irreducible variety defined over Era-1. Let 

x be a generic point of V over Era-1. Then E~  = Em_l(x)  is a finitely generated 

regular extension of E. Apply Lemma 3 to C, Era- l ,  and K0 and construct an 

extension Em C_ E '  m of Era-1 such that E'm/Em is a finite purely inseparable 

extension and C(Em) --- C(Em_I) .  By (2c) for m - 1 we have C(Em) = C(K). 

As E~  is a regular extension of Era-1 it is linearly disjoint from/7(Fro-1 over 

Era-1. Hence, Fm= E'Fm-1 is linearly disjoint f rom/~F,~- I  over Fm-1. Since 

Fro-1 is linearly disjoint from /~ over K,  we have that Fm is linearly disjoint 

f rom/~  over K. Thus Fm is a regular extension of K. By construction, Fm is a 

finite purely inseparable extension of Em and V~j (Fro) # 0 for i, j = 1 . . . ,  m. 

Let E = Urn=l~176 Em and F = Urn=r~176 Then E and F are countable regular 

extensions of K. Also, F is purely inseparable over E. Hence, in order to prove 

that F is PAC it suffices, by a theorem of Roquette [F J, Thm. 10.4], to prove that  

each absolutely irreducible variety V defined over E has an F-rational point. 

Indeed, if V is such a variety, then V = Vii for some i and j .  Let m = max(i ,  j}.  

By (2d), V has an Fro-rational point, which is, of course, an F-rational point. 

Finally, each point of C(E) belongs to C(Em) for some m and therefore, by 

(2c), to C(K). Thus C(E) = C(K) is a finite set. Hence, by Rabinovich's trick 

[FJ, Prop. 10.1], E is not PAC. | 

Note the maximal purely inseparable extension of E contains F and is therefore 

also PAC: 

COROLLARY 5: There exists a non-PAC field E whose maximal purely insepa- 

rable extension is PAC. 
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Note that  if F / E  is a finite purely inseparable extension, then there exists m 

such that  F p" C_ E. If F is PAC, then so is F p"~ (the fields are isomorphic) and 

therefore, by Roquette 's  theorem, also E. 

PROBLEM 6: Does there exist a purely inseparable extension of  fields F I E  of 

finite transcendence degree over F v such that E is not PAC but F is? 
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