A NON-PAC FIELD WHOSE MAXIMAL PURELY INSEPARABLE EXTENSION IS PAC

BY

EHUD HRUSHOVSKI

Institute of Mathematics, The Hebrew University, Givat Ram, Jerusalem, 91904, Israel and Department of Mathematics, MIT, Cambridge, MA 02139, USA e-mail ehud@math.huji.ac.il*

ABSTRACT

We use the Mordell conjecture for function fields in order to construct a non-PAC field whose maximal purely inseparable extension is PAC.

A field K is pseudo algebraically closed (abbrev. PAC) if each absolutely irreducible variety defined over K has a K-rational point. A theorem of Ax and Roquette [FJ, Cor. 10.7] says that if K is PAC, then so is each algebraic extension of K . The converse is obviously false. However, Geyer and Jarden [GJ, Prob. 12.4] ask if the converse is at least true for purely inseparable extensions.

In this note we answer also the latter question negatively, by constructing a non-PAC field which has a purely inseparable PAC extension.

All fields in this note have a fixed positive characteristic p.

LEMMA 1: Let $F = K(x_1, \ldots, x_n)$ be a finitely generated extension of a field K. *Suppose that K is algebraically closed in F. Then*

(1)
$$
\bigcap_{k=1}^{\infty} K(x_1^{p^k}, \dots, x_n^{p^k}) = K.
$$

Proof: Denote the left hand side of (1) by F_0 . Suppose first that K is perfect. Thus $K^p = K$. Hence $F_0 = F_0^p$ is also perfect. In addition F_0 , as a subfield of F, is finitely generated over K [Lan, p. 64]. If F_0 were transcendental over K , we

^{*} Supported by a Sloan Fellowship Received November 27, 1991

200 **E. HRUSHOVSKI** Isr. J. Math.

could choose a transcendental basis t_1, \ldots, t_r with $r \geq 1$. Then F_0 would have a finite degree over $E = K(t_1, \ldots, t_r)$. On the other hand, since F_0 is perfect, $E(t_1^{1/p^m})$ would be contained in F_0 and would have degree p^m over E for each positive integer m. This contradiction proves that F_0 is algebraic over K. As K is algebraically closed in F, conclude that $F_0 = K$.

In the general case the maximal purely inseparable extension L of K is a perfect field. Hence, by the preceding paragraph,

$$
F_0 \subseteq F \cap \bigcap_{k=1}^{\infty} L(x_1^{p^k}, \dots, x_n^{p^k}) = F \cap L = K.
$$

So, $F_0 = K$.

Suppose that F is a transcendental extension of K. We say that a curve C which is defined over F is nonconstant, if it is not birationally equivalent over $\tilde{K}F$ to a curve which is defined over \tilde{K} . Here \tilde{K} is the algebraic closure of K.

PROPOSITION 2: *Let F be a finitely generated regular extension of a field Ko.* Let C be a nonconstant curve of genus at least 2 which is defined over *F*. Then $C(F)$ is a finite set.

Proof." This is the analog of the Mordell conjecture for function fields. See [Sam, pp. 80, 107, and 118. \blacksquare

LEMMA 3: Let K be a *finitely* generated *regular transcendental* extension *of a field* K_0 . Let C be a nonconstant curve over K of genus at least 2 and let F *be a finitely* generated regular extension *of K.* Then K has a *finitely* generated *extension* $E \subseteq F$ *such that* F/E *is a finite purely inseparable extension and* $C(K) = C(E).$

Proof: Let $F = K(x_1, \ldots, x_n)$, and for each k write $F_k = K(x_1^{p^k}, \ldots, x_n^{p^k})$. By Lemma 1, the intersection of all F_k is K. By Proposition 2, $C(F)$ is a finite set. Hence, there exists a positive integer k such that $C(F_k) = C(K)$. So, $E = F_k$ and F satisfy the assertion of the Lemma.

THEOREM 4: *Let Ko be a countable field of characteristic p* and *let K be a finitely* generated *transcendental extension of Ko. Then K has countable* regular *extensions* $E \subseteq F$ *such that* F/E *is a purely inseparable extension, E is not PAC, but F is PAC.*

Proof: Choose a nonconstant curve C of genus at least 2 which is defined over K (e.g., if $p \neq 2$ and $t \in K$ is transcendental over K_0 , then $Y^2 = X^5 + t$ defines a

Vol. 85, 1994 201

nonconstant curve over K of genus 2; if $p = 2$, then $Y^2 + Y = X + \frac{1}{X} + \frac{1}{X-1} + \frac{1}{X-1}$ defines a nonconstant curve over K of genus 3). By induction we construct two ascending towers of fields $K = E_1 \subseteq E_2 \subseteq E_3 \subseteq \cdots$ and $F_1 \subseteq F_2 \subseteq F_3 \subseteq \cdots$ and for each positive integer m we enumerate the absolutely irreducible varieties which are defined over E_m in a sequence, V_{m1} , V_{m2} , V_{m3} ,... such that

- (2a) E_m and F_m are finitely generated regular extensions of K,
- (2b) F_m/E_m is a finite purely inseparable extension,
- $(C(2c) C(E_m) = C(K)$, and
- (2d) $V_{ij}(F_m) \neq \emptyset$ for $i, j = 1, \ldots, m$.

Indeed, suppose that $E_1, \ldots, E_{m-1}, F_1, \ldots, F_{m-1}$ and V_{ij} for $i < m$ and all j have been defined such that they satisfy (2). Let V be the direct product of V_{ij} for $i, j = 1, \ldots, m-1$. It is an absolutely irreducible variety defined over E_{m-1} . Let **x** be a generic point of V over E_{m-1} . Then $E'_{m} = E_{m-1}(\mathbf{x})$ is a finitely generated regular extension of E. Apply Lemma 3 to C, E_{m-1} , and K_0 and construct an extension $E_m \subseteq E'_m$ of E_{m-1} such that E'_m/E_m is a finite purely inseparable extension and $C(E_m) = C(E_{m-1})$. By (2c) for $m-1$ we have $C(E_m) = C(K)$. As E'_m is a regular extension of E_{m-1} it is linearly disjoint from $\tilde{K}F_{m-1}$ over E_{m-1} . Hence, $F_m = E'_m F_{m-1}$ is linearly disjoint from $\tilde{K}F_{m-1}$ over F_{m-1} . Since F_{m-1} is linearly disjoint from \tilde{K} over K, we have that F_m is linearly disjoint from \tilde{K} over K. Thus F_m is a regular extension of K. By construction, F_m is a finite purely inseparable extension of E_m and $V_{ij}(F_m) \neq \emptyset$ for $i, j = 1 \ldots, m$.

Let $E = \bigcup_{m=1}^{\infty} E_m$ and $F = \bigcup_{m=1}^{\infty} F$ and F are countable regular extensions of K . Also, F is purely inseparable over E . Hence, in order to prove that F is PAC it suffices, by a theorem of Roquette $[FJ, Thm. 10.4]$, to prove that each absolutely irreducible variety V defined over E has an F -rational point.

Indeed, if V is such a variety, then $V = V_{ij}$ for some i and j. Let $m = \max\{i, j\}$. By (2d), V has an F_m -rational point, which is, of course, an F-rational point.

Finally, each point of $C(E)$ belongs to $C(E_m)$ for some m and therefore, by (2c), to $C(K)$. Thus $C(E) = C(K)$ is a finite set. Hence, by Rabinovich's trick [FJ, Prop. 10.1], E is not PAC.

Note the maximal purely inseparable extension of E contains F and is therefore also PAC:

COROLLARY 5: *There exists a non-PAC field E whose maximal purely insepa*rable *extension is PAC.*

202 **E. HRUSHOVSKI** Isr. J. Math.

Note that if F/E is a finite purely inseparable extension, then there exists m such that $F^{p^m} \subset E$. If F is PAC, then so is F^{p^m} (the fields are isomorphic) and therefore, by Roquette's theorem, also E .

PROBLEM 6: *Does there exist a purely inseparable extension of fields F/E of finite transcendence degree over* \mathbb{F}_p *such that E is not PAC but F is?*

ACKNOWLEDGEMENT: The author would like to thank Moshe Jarden who is multiply responsible for the existence of this paper.

References

- **[FJ]** M.D. Fried and M. Jarden, *Field Arithmetic,* Ergebnisse der Mathematik III 11, Springer, Heidelberg, 1986..
- **[GJ]** W.-D. Geyer and M. Jarden, On *stable fields in positive characteristic,* Geometria Dedicata 29 (1989), 335-375.
- [Lan] S. Lang, *Algebraic* Number Theory, Addison-Wesley, Reading, 1970.
- **[Sam]** P. Samuel, *Lectures on Old* and *New Results on Algebraic Curves,* Tata Institute of Fundamental Research, Bombay, 1966.